(SM, PM, Unidirectional, Bidirectional, High Power)<br>(Protected by U.S. patents 7224860, 6757101, 6577430 and pending patents)



BUY NOW


Features

- Solid-State high speed
- Ultra-high reliability
- Fail-safe latching
- Low insertion loss
- Direct low voltage drive
- Compact
- Low cost

The CL Series Fiber Optical Switch redirects an incoming optical signal into a selected output fiber, achieved using patented non-mechanical configurations and activated via an electrical control signal. Latching operation preserves the selected optical path after the drive signal has been removed. The all-solid-state CL fiber optic switch features low insertion loss, high extinction ratio, high channel isolation, and extremely high reliability and repeatability. Available configurations include polarization-independent; polarization-maintaining; bidirectional, and high power. It is designed to meet the most demanding switching requirements of continuous operation without failure, over 25-year longevity, operation under shock/vibration environment and large temperature variations, and fast response time.
The switch also has circulator and isolator functions. An electronic driver is available for this series of switches.
The magneto-optical crystals used in the CL switches have no fatigue nor drift effect.

## Specifications

| Parameter | Min | Typical | Max | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Operation Wavelength ${ }^{[1]}$ | 1520 | 1550 | 1580 | nm |
|  | 1295 | 1310 | 1325 |  |
| Insertion Loss ${ }^{[2]}$ |  | 0.7 | $1.0\left(1.2{ }^{[4]}\right)$ | dB |
| Cross Talk | 18 | 25 |  | dB |
|  | 20 | 28 |  | dB |
| Return Loss | 50 | 55 |  | dB |
| PDL (SM Series) |  | 0.1 | 0.2 | dB |
| Extinction Ratio (PM Series) | 18 | 25 |  | dB |
| Optical Switching Speed (rise, fall) | 5 |  | 10 | $\mu \mathrm{s}$ |
| Repetition Rate |  | 2K |  | Hz |
| Polarization Mode Dispersion |  | 0.1 | 0.2 | ps |
| Operating Temperature | -5 |  | 70 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature | -40 |  | 85 | ${ }^{\circ} \mathrm{C}$ |
| Optical Power Handling ${ }^{[3]}$ |  | 300 | 500 | mW |
|  |  |  | 2 | W |
| Package Dimension | $58.2 \mathrm{~L} \times 8.4 \mathrm{~W} \times 8.4 \mathrm{H}$ |  |  | mm |
| Durability | $10^{15}$ |  |  | cycles |

## Notes:

[1]. Agiltron can achieve the same SPEC at the $L$ band.
[2]. Measured without connectors. Each connector adds 0.3 dB
[3]. Special operating temperature -40 to $+85^{\circ} \mathrm{C}$ is available with Ordering Information.
[4]. For special operating temperatures, lower than $-20^{\circ} \mathrm{C}$ and higher than $+70^{\circ} \mathrm{C}$.

[^0]Mechanical Dimensions (Unit: mm)

*Product dimensions may change without notice. This is sometimes required for non-standard specifications.

## DATASHEET

## Electrical Driving Information

The switch is actuated by applying a voltage pulse. Applying one polarity pulse, one light path will be connected and latched to the position. Applying a reversed polarity pulse, another light path will be connected and latched to the position after pulse removed.

| Parameter | Minimum | Typical | Maximum | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Drive Voltage | 2.25 | 2.5 | 2.75 | V |
| Resistance (each Pin Group) | 7 | 9 | 11 | $\Omega$ |
| Pulse Duration | 0.2 | 0.3 | 0.5 | ms |

Driving PCB with RS232, USB, TTL, and Windows ${ }^{T M}$ GUI is available.

Bidirectional Series 1x1, 1x2 or $2 x 1$ Switch Driving Table

| Optical Path |  | Pin $\mathbf{1}$ | Pin $\mathbf{2}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{1 x \mathbf { 1 }}$ | $\mathbf{1 x 2}$ or $\mathbf{2 x \mathbf { 1 }}$ |  |  |
| Port 1 $\leftrightarrow$ Port 2 | Port $\mathbf{1} \leftrightarrow$ Port 2 | 0 | + |
| Dark | Port $\mathbf{1} \leftrightarrow$ Port 3 | + | 0 |

" + " is high voltage pulse, " 0 " is zero voltage.

Unidirectional Series 1x1, 1x2 Switch Driving Table

| Optical Path |  | Pin 1 | Pin 2 |
| :---: | :---: | :---: | :---: |
| 1x1 | $\mathbf{1 x 2}$ |  |  |
| Port 1 $\rightarrow$ Port 2 | Port 1 $\rightarrow$ Port 2 | 0 | + |
| Dark | Port 1 $\rightarrow$ Port 3 | + | 0 |

" + " is high voltage pulse, " 0 " is zero voltage.

Unidirectional Series 1x1, 2x1 Switch Driving Table

| Optical Path |  | Pin 1 | Pin 2 |
| :---: | :---: | :---: | :---: |
| $\mathbf{1 x \mathbf { 1 }}$ | $\mathbf{2 x 1}$ |  |  |
| Port 2 $\rightarrow$ Port 1 | Port 2 $\rightarrow$ Port 1 | + | 0 |
| Dark | Port 3 $\rightarrow$ Port 1 | 0 | + |

" + " is high voltage pulse, " 0 " is zero voltage.

## Note:

The driving voltage value is transient voltage with a full load. The driver circuitry needs to provide sufficient current ( $\sim 300 \mathrm{~mA}$ ) during the switching. Inside the switch core is an electromagnet with a residual magnetic field. The residual magnetic field will be established when an electrical current flows in one direction through the coil for a sufficiently long period. The residual magnetic field latches the switch state even without applying a voltage (the current flow stopped). Flowing a current in the opposite direction for a sufficient time changes the switch stage by establishing a reversal magnetic field. The coil is forgiving to the driver unless one burns it by applying a higher voltage or a current for too long (day). The switch can also be operated at high repetition rates of kHz , where the residual magnetic field may not be fully established.

## DATASHEET

## Typical Switching Response



Typical Loss Change of 1x2 vs Switching Numbers


## DATASHEET

Functional Diagram


CL 1x2 Series Switch

## Ordering Information

|  | $\square \square$ | $\square$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Prefix | Type | Wavelength | Switch | Package | Fiber Type | Fiber Cover | Fiber Length | Connector ${ }^{[5]}$ |
| $\begin{aligned} & \text { CLSW- }-^{[1]} \\ & \text { CLPM- }{ }^{[2]} \\ & \text { CLBD- } \\ & \text { CLPB- }{ }^{[3]} \end{aligned}$ | $\begin{aligned} & 1 \times 1=11 \\ & 1 \times 2=12 \\ & 2 \times 1=21 \\ & \text { Special }=00 \end{aligned}$ | $\begin{aligned} & 1310=3 \\ & 1550=5 \\ & \text { Special }=0 \end{aligned}$ | $\begin{aligned} & \text { Single Stage }{ }^{[6]}=1 \\ & \text { Special }=0 \end{aligned}$ | $\begin{aligned} & \text { Standard }=3 \\ & -40^{\sim}+85^{\circ} \mathrm{C}=\mathrm{A} \\ & -40^{\sim}+70^{\circ} \mathrm{C}=\mathrm{B} \\ & -20^{\sim}+85^{\circ} \mathrm{C}=\mathrm{C} \\ & -20^{\sim}+70^{\circ} \mathrm{C}=\mathrm{D} \\ & \text { Special }=0 \end{aligned}$ | SMF-28 = 1 <br> PM 1550 = B <br> PM $1310=$ D <br> Special $=0$ | $\begin{aligned} & \text { Bare fiber = } 1 \\ & 900 \text { um tube }=3 \\ & \text { Special = } 0 \end{aligned}$ | $\begin{aligned} & 0.25 m=1 \\ & 0.5 m=2 \\ & 1.0 m=3 \\ & \text { Special }=0 \end{aligned}$ | $\begin{aligned} & \text { None }=1 \\ & \text { FC } / P C=2 \\ & \text { FC/APC }=3 \\ & \text { SC/PC }=4 \\ & \text { SC } / \text { APC }=5 \\ & \text { ST/PC }=6 \\ & \text { LC } / P C=7 \\ & \text { Duplex LC } / P C=8 \\ & \text { LC/APC }=A \\ & \text { LC/UPC }=U \\ & \text { Special }=0 \end{aligned}$ |

[1]. CLSW: CrystaLatch 1x1, 1x2 SM SWITCH.
[2]. CLPM: CrystaLatch 1x1, $1 \times 2$ PM Switch.
[3]. CLBD: CrystaLatch 1x1, 1x2 SM BIDIRECTIONAL Switch.
[4]. CLPB: CrystaLatch 1x1, 1x2 PM Bidirectional Switch.
[5]. There isn't any connector in high power switches. Please contact us for high power connectors.
[6]. Using one switching cores for low cost

## Fiber Core Alignment

Note that the minimum attenuation for these devices depends on excellent core-to-core alignment when the connectors are mated. This is crucial for shorter wavelengths with smaller fiber core diameters that can increase the loss of many decibels above the specification if they are not perfectly aligned. Different vendors' connectors may not mate well with each other, especially for angled APC.

## Fiber Cleanliness

Fibers with smaller core diameters $(<5 \mu \mathrm{~m})$ must be kept extremely clean, contamination at fiber-fiber interfaces, combined with the high optical power density, can lead to significant optical damage. This type of damage usually requires re-polishing or replacement of the connector.

## Maximum Optical Input Power

Due to their small fiber core diameters for short wavelength and high photon energies, the damage thresholds for device is substantially reduced than the common 1550 nm fiber. To avoid damage to the exposed fiber end faces and internal components, the optical input power should never exceed 20 mW for wavelengths shorter 650 nm . We produce a special version to increase the how handling by expanding the core side at the fiber ends.

## DATASHEET

## Driver Design Example for 1x4

A recommended +5 VDC powered driving circuit is provided. The resistor network $\mathrm{R} 1 \sim \mathrm{R} 8$ is to suppress the driving signal's voltage level to meet the "switch voltage" requirements. In specific applications, users can use lower voltage to eliminate the R1~R8. The Q1~Q8 is the control signal from either a function generator or a microcontroller general purpose I/O. The Q1-Q8 switching speed must meet the specific MOSFET switching requirement and CL $1 \times 4$ Switch specific requirement. Usually, the control signal speed is $\leq 2 \mathrm{kHz}$.


Usually, a clean power supply source will be sufficient. However, decoupling capacitors for the transistor supply rail are recommended depending on different applications. Minimum the current loop on the switching circuits will minimize the switching noise. For other layout recommendations, please refer to books or application notes from the IC manufacturer.


[^0]:    Legal notices: All product information is believed to be accurate and is subject to change without notice. Information contained herein shall legally bind Agiltron only if it is specifically incorporated into the terms and conditions of a sales agreement. Some specific combinations of options may not be available. The user assumes all risks and liability whatsoever in connection with the use of a product or its application.

    Rev 03/14/24

